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Abstract. We consider self-avoiding walks on the simple cubic lattice, with a unit degree
vertex at the origin and confined to the half-spacez > 0. In addition the walks interact with the
planez = 0 and have a vertex–vertex interaction within the walk, so that the walk can adsorb
at the surfacez = 0 and also undergo collapse. We investigate the interaction between collapse
and adsorption using Monte Carlo methods, and explore the form of the phase diagram.

1. Introduction

Self-avoiding walks have become the standard model of the equilibrium properties of
linear polymer molecules in dilute solution in a good solvent (Madras and Slade 1993).
Including a short-range attractive interaction with an impenetrable surface provides a model
of polymer adsorption (for reviews see Whittington (1982), De’Bell and Lookman (1993)
and Eisenriegler (1993)) and one version of this model is a self-avoiding walk on (say) the
simple cubic lattice, with a unit degree vertex fixed at the origin and all vertices having
non-negativez-coordinate. Each vertex with zeroz-coordinate contributes an additional
energy term. If this surface interaction term is attractive the system can exhibit an
adsorption transition (Hammersleyet al 1982) and the model has been extensively studied
using Monte Carlo methods (Eisenriegleret al 1982, Meirovitch and Chang 1993, Hegger
and Grassberger 1994, Grassberger and Hegger 1995a). The location of the transition is
known quite accurately and the values of several critical exponents, including the crossover
exponentφ, have been estimated.

The effect of solvent quality can be investigated by introducing a vertex–vertex
interaction into the self-avoiding walk model. Although there is no proof of the existence of
a collapse transition in this model, the numerical evidence for a transition is very strong. This
problem has also been extensively studied by Monte Carlo methods (Mazur and McCrackin
1968, Kremeret al 1981, Webmanet al 1981, Meirovitch and Lim 1989, Grassberger and
Hegger 1995b, Tesiet al 1996a, Nidras and Brak 1997).

Of course, adsorption can occur from solvents of different quality and the interplay
between the adsorption and collapse phenomena has been investigated by a number of
authors. The special case of adsorption at theθ point has received considerable attention, and
the values of the surface critical exponents have been estimated numerically (see for instance
Vanderzandeet al 1991, Fosteret al 1992, Hegger and Grassberger 1994). Renormalization
group arguments (Eisenriegler and Diehl 1988) predict that the three-dimensional system will
have random walk exponents, but with interesting non-power-law logarithmic corrections.
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For systems in which both the vertex–vertex interaction and the vertex–surface
interaction can vary, the form of the phase diagram has been investigated by several
approaches (Foster 1990, Foster and Yeomans 1991, Cattarinusi and Jug 1991, Fosteret al
1992, Vrbov́a and Whittington 1996). In two dimensions a directed version of this problem
has been studied using transfer matrix methods and its phase diagram is well understood
(Foster 1990, Foster and Yeomans 1991). For the directed model in two dimensions there
are three phases: desorbed-expanded, desorbed-compact and a single adsorbed phase, and
one expects the same three phases for the undirected version in two dimensions (Foster
et al 1992). In three dimensions one expects four phases since collapse can occur in the
adsorbed phase. These are: desorbed-expanded (DE), desorbed-compact (DC), adsorbed-
expanded (AE) and adsorbed-compact (AC). There are some rigorous results about the form
of this phase diagram (Vrbová and Whittington 1996), but many questions still remain to
be answered. The aim of this paper is to investigate these details for the three-dimensional
problem using Monte Carlo methods.

2. Definition of the model

We consider self-avoiding walks on the simple cubic lattice, starting at the origin and with
no vertex having negativez-coordinate. We call such walkspositive walks. A visit is a
vertex of the walk which is in the planez = 0. A contactis a pair of vertices of the walk
which are unit distance apart and which are not connected by an edge of the walk. Let
c+n (v, k) be the number ofn-edge positive walks withv+1 visits andk contacts. We define
the partition function

Z+n (α, β) =
∑
v,k

c+n (v, k)e
αv+βk (2.1)

and the corresponding free energy

κ+n (α, β) = n−1 logZ+n (α, β). (2.2)

The limit limn→∞ κ+n (α, β) has been proved to exist for allα <∞ whenβ 6 0 (Vrbová and
Whittington 1996), and the corresponding limiting free energy for polygons with adsorption
and collapse terms has been proved to exist for all finite values ofα andβ. For the polygon
case there is an adsorption transition for every value ofβ, so that there is a phase boundary
α = αc(β) between the desorbed and adsorbed phases. Forβ > 0, αc(β) satisfies the
inequalities

06 αc(β) 6 A+ 2β (2.3)

whereA is a certain positive constant. In addition, if there is a collapse transition for
polygons atβ = βo whenα = 0, then there is a collapse transition for polygons at the same
value ofβ for all α < αc(βo). One would expect exactly the same behaviour for walks as
for polygons.

In this paper we shall concentrate on the adsorption and collapse of self-avoiding walks.
We shall investigate the largen behaviour ofκ+n (α, β), and especially∂2κ+n (α, β)/∂α

2 and
∂2κ+n (α, β)/∂β

2, using Monte Carlo methods, in order to obtain information about the phase
diagram in the(α, β)-plane.

3. Monte Carlo approach

We are interested in investigating the complete phase diagram which involves sampling at
points which include large positive values of bothα andβ. This suggests that a standard
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Markov chain Monte Carlo approach is unlikely to be successful. This is because it is
difficult to construct a Markov chain, defined on a set of positive walks withn fixed
and reasonably large, which will be sufficiently mobile at large positive values ofα and
β. Instead we use a multiple Markov chain method (Geyer 1991) where one samples
simultaneously at various values ofα andβ, includingα = β = 0 where convergence will
be rapid. This method has been used successfully to investigate the collapse transition in
walks (Tesiet al 1996a) and polygons (Tesiet al 1996b).

We first define an underlying symmetric Markov chain, with transition matrix elements
qij , on the set ofn-edge positive walks labelledi = 1, 2, 3, . . . . The elementary moves of
this Markov chain are the pivot moves (Madras and Slade 1993, section 9.4.3) together with
local moves designed to reduce the autocorrelation time associated with local variables such
as the number of contacts. See Tesiet al (1996a) for details. This Markov chain can be
shown to be ergodic for positive walks by adapting the argument in section 9.7.3 of Madras
and Slade (1993). We then define a Markov chain, at fixedα andβ, with transition matrix
elements

pij = qij min[1, eα(vj−vi )+β(kj−ki )] j 6= i (3.1)

wherevi and ki are the numbers of visits and contacts in the positive walki. We next
consider such Markov chains at a set of values ofα andβ, (αl, βl), l = 1, 2, . . . ,M, with
corresponding transition matrices‖pij (l)‖. These Markov chains are evolved in parallel
and, at fixed specified times, an adjacent pair of valuesl and l + 1 are chosen, and the
configurations are swapped between the two Markov chains, with a probability chosen
to make the limit distribution of this composite Markov chain the product of the limit
distributions of the elementary Markov chains at(αl, βl). For details see Geyer (1991)
and Tesiet al (1996a). Since the limit distribution is a product distribution the data at
the different values of(αl, βl) can be analysed as if they had been obtained by separate
runs. Although the method gives estimates at only a discrete set of values of theα-and
β-parameters, these data can be reweighted to obtain estimates at intermediate values. Of
course, the correlation between data at different(αl, βl)-values must be taken into account
in the analysis.

The main practical problem in the implementation of the multiple Markov chain scheme
is the choice of(αl, βl), l = 1, 2, . . . ,M. The pairs(αl, βl) and (αl+1, βl+1) must be such
that swaps between these values are sufficiently frequently accepted. We shall normally be
interested in estimating thermodynamic and metric properties at a set ofα-values at fixed
β or at a set ofβ-values at fixedα. Consequently we usually chooseα1 = β1 = 0 (so that
we have at least one pair of values at which convergence is rapid) and then a set of values
along theα- or β-axis up to the value ofα or β which is of interest. Finally we choose a
set of values ofβ at fixedα, or α at fixedβ, which probes the relevant region of the phase
diagram, and crosses the phase boundary (or phase boundaries) in which we are interested.
By carrying out preliminary runs, and keeping track of the frequency of accepted swaps, it
is quite easy to construct the required set of(αl, βl) values.

4. Results

Our main aim was to locate approximately the phase boundaries between the expected
phases: DE, AE, DC and AC. At finiten there are no singularities in the free energy but we
expect peaks in the ‘heat capacities’∂2κ+n (α, β)/∂α

2 and ∂2κ+n (α, β)/∂β
2 when we cross

a phase boundary along a line of constantβ or constantα. In addition we calculated the
mean number of visits, the mean number of contacts, and the components of the radius
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Figure 1. The locations of the heat capacity peaks forn = 100. The diamonds correspond to
peaks in∂2κ+n (α, β)/∂α2 at fixedβ, and the crosses correspond to peaks in∂2κ+n (α, β)/∂β2 at
fixed α.

of gyration parallel and perpendicular to the surface. These quantities were very useful in
deciding which phase boundary was being crossed.

In figure 1 we show the locations of heat capacity peaks forn = 100. The diamonds
correspond to peaks in∂2κ+n (α, β)/∂α

2 at fixed β, and the crosses correspond to peaks
in ∂2κ+n (α, β)/∂β

2 at fixed α. There is a single peak in∂2κ+n (α, β)/∂α
2 as α is varied

at small values ofβ, corresponding to crossing the phase boundary from DE to AE (see
figure 2), and a single peak in∂2κ+n (α, β)/∂β

2 asβ is varied at smallα, corresponding to
crossing the phase boundary from DE to DC. In each case the peak heights increase asn

increases. The location of the peak in∂2κ+n (α, β)/∂α
2 depends only weakly onβ. Vrbová

and Whittington (1996) showed that the phase boundary between the DE and DC phases is
a vertical line and the peak position which we observe in∂2κ+n (α, β)/∂β

2 at two values of
α agree within the error bars even at this small value ofn.

The situation becomes more complicated when we attempt to locate the phase boundaries
between AE and AC, and between DC and AC. We used a set of(αl, βl) values which
involved a set ofα values along theα-axis, followed by a set ofβ values (up toβ = 1.6)
at fixedα, in an attempt to locate both phase boundaries in a single run. In figure 3 we
show theβ-dependence of∂2κ+n (α, β)/∂β

2 for n = 100, at three values ofα. Each curve
shows two peaks. The location of the first peak depends only weakly on the value ofα,
while that of the second peak moves to largerβ-values asα increases. We expect that the
first peak is associated with collapse in the adsorbed phase, and the second with desorption
in the collapsed phase. In figure 4 we show the mean number of visits per edge,〈v〉/n, as a
function ofβ at the same three values ofα. In each case there is a rapid decrease in〈v〉/n
close to the location of the second peak in∂2κ+n (α, β)/∂β

2, confirming that this peak is
associated with desorption. In figure 5 we show the mean-squarez-component of the radius
of gyration as a function ofβ, at three values ofα. In each case there is a marked increase,
close to the location of the second peak in∂2κ+n (α, β)/∂β

2, again confirming that this peak
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Figure 2. The α-dependence of∂2κ+n (α, β)/∂α2 at β = 0 for 50 (◦), 100 (+), 200 (?), 400
(×) and 1000(•) edges.

Figure 3. Theβ-dependence of∂2κ+n (α, β)/∂β2 for n = 100, atα = 1.29 (◦), α = 1.39 (•)
andα = 1.50 (?).

is associated with desorption. The mean-squarex-component of the radius of gyration
decreases monotonically withβ, but the most rapid decrease is at smallβ, suggesting that
the first peak in∂2κ+n (α, β)/∂β

2 is associated with collapse in the adsorbed phase.
The obvious question is then-dependence of these quantities. In figure 6 we show

the β-dependence of∂2κ+n (α, β)/∂β
2 at α = 1.39 for n = 50, 100 and 200. Both peaks
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Figure 4. The mean-number of visits per edge,〈v〉/n, for n = 100, as a function ofβ at
α = 1.29 (◦), α = 1.39 (•) andα = 1.50 (?).

Figure 5. The mean squarez-component of the radius of gyration as a function ofβ for n = 100,
at α = 1.29 (◦), α = 1.39 (•) andα = 1.50 (?).

increase in height asn increases though this is much more marked for the peak at higher
values ofβ. This peak also sharpens considerably asn increases. The increase in height
(and the sharpening) suggests that these peaks will remain in the infiniten limit and that
they are indicative of the thermodynamic behaviour of the system. The peak at lowerβ

moves somewhat towards larger values ofβ asn increases while the peak at largerβ moves
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Figure 6. The dependence of∂2κ+n (α, β)/∂β2 at α = 1.39, for n = 50 (◦), n = 100 (•) and
n = 200 (?).

Figure 7. Theα-dependence of∂2κ+n (α, β)/∂α2 at β = 0.693, forn = 100 (◦), n = 200 (•)
andn = 400 (?).

to smallerβ-values with increasingn.
To confirm the location of the phase boundary between AC and DC we also carried out

runs using a set of(αl, βl)-values with a set ofβ-values along theβ-axis, to cross into the
DC phase, followed by a set ofα-values (up toα = 1.4) at fixedβ. In figure 7 we show
the α-dependence of∂2κ+n (α, β)/∂α

2 at β = 0.693, forn = 100, 200 and 400. There are
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Figure 8. The α-dependence of〈v〉/n at β = 0.693, for n = 100 (◦), n = 200 (•) and
n = 400 (?).

two peaks, the first of whichdecreasesin height asn increases. If, as we argue below,
the second peak is associated with the adsorption transition, then we know rigorously, at
least for polygons (Vrbov́a and Whittington 1996), that limn→∞〈v〉/n is zero forα < αc(β)

for any β, so there can be no peak in∂2κ+n (α, β)/∂α
2 in the n → ∞ limit below the

adsorption transition. A plot of〈v〉/n againstα at β = 0.693, for n = 100, 200 and 400
(see figure 8) shows that〈v〉/n is a decreasing function ofn (for these values ofn) at least
up to α = 0.9, consistent with limn→∞〈v〉/n being zero below the phase boundary. The
question of why convergence to zero is so slow asn increases is an interesting one. In the
DC phase one expects that the walk will be a compact object and, at small positiveα, the
walk can have O(n2/3) vertices in the surface without substantial loss of entropy. Therefore
one expects that〈v〉/n = O(n−1/3) for α positive but below the adsorption phase boundary,
which converges slowly to zero asn goes to infinity.

The second peak in∂2κ+n (α, β)/∂α
2 increases in height asn increases and its position

moves to slightly smaller values ofα asn increases. We associate this peak with adsorption
for the following reasons. The mean number of contacts at first increases slightly asα

increases (presumably as the walk is pulled down towards the surface) and then undergoes
a marked decrease as the walk expands in thex- and y-directions, and we associate this
latter decrease with adsorption. The mean-squarex-component of the radius of gyration
increases rapidly atα values around the location of the second peak in∂2κ+n (α, β)/∂α

2,
corresponding to the walk spreading in the(x, y)-plane when adsorption occurs.

We have carried out a similar calculation atn = 100 and atn = 200, withβ = 1.03,
and the location of the adsorption transition estimated in this way agrees well with the
estimate obtained by varyingβ at fixedα. See figure 9.

Our results forn = 100 are summarized in figure 1. We have repeated several of the
runs forn = 200 and, although there are small shifts in the peak positions, the qualitative
form of the phase diagram remains the same.
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Figure 9. Theα-dependence of∂2κ+n (α, β)/∂α2 at β = 1.030 for 100(◦) and 200(•) edges.

5. Discussion

The phase diagram suggested by figure 1 shows four phases, as expected. In addition, the
shapes of the phase boundaries between the DE and DC phases, and between the DC and
AC phases, are consistent with the rigorous arguments of Vrbová and Whittington (1996).
The phase diagram has two triple points so that there is a phase boundary between the AE
and DC phases. (We usetriple point to mean a point in the phase diagram where three
phases coexist, making no assertions about the orders of the phase transitions along the
three phase boundaries.) Of course, the locations of the phase boundaries are determined
by the infiniten behaviour, so the estimates from finiten data can only be regarded as
approximations. Ideally one should use data at a range of values ofn and extrapolate to
infinite n, but that is beyond the scope of this paper. However, our results atn = 100 and
200 show that the qualitative features of the phase diagram are the same for these values
of n.

There is very strong evidence that both the DE to AE transition (see for instance
Eisenriegleret al 1982, Hegger and Grassberger 1994) and the DE to DC transition (see for
instance Duplantier 1986, 1987, Maritanet al 1989, Meirovitch and Lim 1990) are second
order. In addition the collapse transition for a self-avoiding walk in two dimensions (i.e.
crossing the phase boundary from AE to AC atα = ∞) is second order (see for instance
Saleur 1986, Batchelor and Yung 1995), so that one would expect the AE to AC transition
to be second order. Our results are consistent with these predictions although our data
do not extend to sufficiently large values ofn to make reliable estimates of the crossover
exponents. The orders of the transitions from DC to AC and from DC to AE are less clear,
though results on the directed model in two dimensions indicate that adsorption from the
compact phase is a first-order transition (Foster 1990, Foster and Yeomans 1991).

This is the first time that evidence for these four phases has been obtained from a Monte
Carlo calculation, and multiple Markov chain sampling is clearly a highly effective way of
probing the behaviour in compact phases. An alternative approach would be to use umbrella
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sampling (Torrie and Valleau 1977) and it would be very interesting to compare the relative
effectiveness of the two methods for demanding problems of this type.
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